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ABSTRACT

A simple method for the rapid determination of the
linearized surface pressure distribution on streamlined ducted
bodies in axisymmetric flow is developed using conventional
singularity distributions. The final form of the pressure
coefficient is expressed directly as a single matrix operation
on the duct sectional properties and tables of the necessary
matrix coefficients are given. Several numerical examples are
worked out and compared with the results of previous theoretical

and experimental investigations.

iii



TABLE OF CONTENTS

INTRODUCTION

CHAPTER ONE - BASIC FORMULATION

1.1
l.2

1.3 Determination of Source and Vortex Strengths

Mathematical Model

Induced Velocity Field

CHAPTER TWO -~ REDUCTION OF EFFECTIVE CAMBER

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

Geheral Considerations

Form of Thickness Distribution and t°
Form of Il
Singular-Singular Contribution
Singular-Regular Contribution

Regular-Singular Contribution

Regular-Regular Contribution

Final Form of Effective Camber

CHAPTER THREE -~ DUCT PRESSURE DISTRIBUTION, SECTIONAL

3.1
3.2
3.3
3.4
3.5
3.6

RADIAL FORCE AND PITCHING MOMENT

Linearized value of cp

Form of 12

Reduction of Direct-Thickness cContribution
Reduction of Effective-Camber Contribution
Final Form of ¢

P
Sectional Radial Force and Pitching Moment

iv

17
18
21
30
31
33
35
37

4y

45
48

56
€1

€7



CHAPTER FOUR - NUMERICAIL EXAMPLES
4.1 1llustrative Calculation

4.2 comparison with Previous Results
CONCLUSIONS
REFERENCES

APPENDIX

68
71

80

81

84



P.q

PRINCIPAL NOMENCLATURE

coefficients of source distribution expansion
related to A by Egs. (2.6)

coefficients of thickness distribution expansion
duct chord

duct sectional pitching moment coefficient

duct surface pressure coefficient

duct sectional radial force coefficient
coefficients of Glauert series for <y
two-dimensional Glauert coefficients
non-dimensional duct vortex distribution, <y/U
strength per unit length of bound duct sources

pressure coefficient of two-dimensional airfoil
with thickness t and no camber

coefficients of Fourier series expansion for th
L.+~ . e~

9 (@) - 2/, (@)

L 6% Q7 (@)

2 -3

coefficients of Fourier series expansion for GL2

vi



Q%(w)

Q_%@”)

static pressure

Legendre function of second kind and plus
one-half order

Legendre function of second kind and minus
one-half order

radial coordinate
duct reference radius
regular part of Il

regular part of 12
duct thickness distribution

axial velocity induced by bound ring sources
axial velocity induced by bound ring vortices
free stream velocity

radial velocity induced by bound ring sources
radial velocity induced by bound ring vortices
axial coordinate

strength per unit length of bound duct vortices

X -€

vii



a1

(%)

(")

(]}

{

]

inclination of duct camber line relative
to x axis

duct effective camber, €_ = e - ét
thickness-induced camber

circumferential coordinate

c/2R

axial variable

angular variable, X = - A cos ¢

velocity potential for isolated source ring
angular variable, E = - A cOo8 @

stream function for isolated vortex ring

argument of Legendre functions

2
AR
1L+ =~

quantity nondimensionalized with respect to
R:; e.g., X = x/R

differentiation of a function with respect
to its indicated argument

infinite column matrix

infinite square matrix

viii




THE AERODYNAMIC LOADING
ON
STREAMLINED DUCTED BODIES

INTRODUCTION

During the past three years we have formulatedl and
studiedg'3 a three-dimensional theory for the finite-bladed
shrouded propeller in the forward flight regime. The mathematical
model chosen to represent the system was based on the classical
concepts of vortex propeller theory and of lifting-surface theory
for ring wings of zero thickness in inviscid, incompressible flow.
The purpose of this report is to remove the limitation of zero
thickness as all shrouds have a finite thickness which may con-
tribute substantially to the determination of such quantities as
the shroud loading and propeller inflow. Since the effect of the
propeller may be simply superimposed within the framework of
linearized theory, it is sufficient for our purposes to limit our
attention directly to the problem of the annular airfoil.

The problem of finding the detailed velocity field associated
with and the forces acting on annular airfoils in incompressible
flow has been the subject of extensive investigation over the
past twenty-five years. Possibly the earliest treatment using
singularity distributions and classical thin-airfoil theory was

4 in 1940. Since that time, many contri-

13-19

given by H. E. Dickmann

5-12

butions have appeared, culminating in the studies




of J. Welssinger, who was the first to give a comprehensive
treatment of the thickness problem. Nevertheless, in spite of
all the work which has been undertaken, a simple, accurate method
had not yet been developed for the rapid prediction of duct
surface pressure distributions for preliminary design studies.

In this report, such a method for the linearized pressure
distribution in the case of axisymmetric flow is developed. The
results obtained are presented in a form such that they may be
incorporated directly into our previous studies of the ducted
propeller or used "as is" in the treatment of ducted bodies.

The conventional mathematical model of ring vortices and
sources distributed on a reference cylinder is chosen to repre-
sent the duct and the approximations of thin-airfoil theory are
employed throughout. The source strength depends only upon the
rate of change of the airfoil profile thickness. In turn, this
distribution induces a radial wash which, together with that
induced by the vortex distribution, must be equal to the local
camber everywhere on the duct surface. With the thickness dis-
tribution given in a generalized form of the NACA four-and five-
digit airfoil series, the thickness-induced radial wash is
expressed in appropriate matrix form. The solution for the
unknown vortex strength follows immediately using the iteration
technique of D. E. Ordway and M. D. Greenberga. Then the
linearized surface pressure distribution is reduced to a single

matrix operation on the duct sectional properties. The effect




of the duct chord-to-diameter ratio is explicitly obtained and
tables of all necessary matrix coefficients are given for four
typical values of this parameter. 1Incidentally, several defi-
nite integrals not appearing in common integral tableseo'21
were evaluated during the course of this work and have been
collected in an appendix.

Briefly, the report is presented as follows. The first
Chapter gives the mathematical formulation of the problem, the
derivation of the induced velocity field, and the procedure for
finding the strengths of the source and vortex distributions.
Chapter Two details the reduction of the thickness-induced
radial wash to matrix form in terms of the known thickness dis-
tribution coefficients. In Chapter Three, the duct surface
coefficient is found in matrix form and simple expressions for
the sectional radial force and pitching moment coefficients are
furnished. Tabulated values of all t“he required matrix coeffi-
cients for four body chord-to-diameter ratios are presented.
Several numerical examples are worked out to illustrate the
computational technique and to compare with previous theoret-

ical and experimental results in Chapter Four.



CHAPTER ONE

BASIC FORMULATION

1.1 Mathematical Model

Consider an annular airfoil, or duct, at zero incidence in
a uniform, inviscid, incompressible stream U , see Fig. 1l.1l.

A cylindrical coordinate system (x,r,0) is chosen with the
origin fixed at the center of the duct, x = -¢/2 corresponding
to the duct leading edge and x = +¢/2 to the trailing edge.
The duct section is assumed known and is the same at every
azimuthal station. The local inclination of the camber line to
the x-axis is denoted by €(x) and the thickness distribution
by t(x) . Both € and t/c are assumed small.

Making the conventional approximations of linearized per-
turbations, the annular airfoil is replaced by a distribution of
ring sources and vortices on an appropriate reference cylinder
of radius R . Due to the axisymmetry of the flow field, the
source strength per unit length £ does not vary with 6 .

The same is true of the vortex strength per unit length vy .
Since < = y(x) , there are no trailing vortices from the duct.
The strength of these distributions will be determined
from the physical boundary condition that the flow be everywhere

tangent to the duct surface together with the Kutta-Joukowski

condition at the trailing edge. Consistent with our assumptions,
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1.2

this reduces to the familiar thin-airfoil approximation

Ve + v
ei%t'=i%rl (1.1)

where Ve and “y are the radial velocities induced on the
reference cylinder by the source and vortex distributions
respectively and <vy(c/2) = 0 . Throughout the report we adopt
the convention that the prime () denotes total differentiation
of a function with respect to its indicated argument and, in
the event a double sign precedes a quantity, the top sign is to

be used to give the value on the outer duct surface and the

bottom sign, the value on the inner surface.

Induced Velocity Field

To solve Eq. (1.1) the radial componeﬁt of the velocities
induced by £ and 7y are required. Subsequently, the axial
component will be needed for the pressure coefficient. There-
fore, we will derive general expressions for both before we
proceed.

The velocity potential ¢ for an isolated source ring
of unit strength is generally expressed in terms of the complete
elliptic integral of the first kind. Alternatively, we may use

22

the relation between this function and the Legendre function

of second kind and minus one-half order Q-B“D) to obtain,



1 1
¢ = -z EQ-%(‘D)
=2 - 2
o= 48Xt (To1)° (1.2)
2r
where x/R=Ex , xr/REFr, ... and AXx is the axial separation

of the field point and the singularity at £ , Ax = X - £
The corresponding axial and radial velocities are gotten from
d9/dx and 0%/Or respectively. Upon reduction of the latter

velocity by recursion relation522

and chordwise integration of
both over £ , we find for the resultant contribution ug to the

axial perturbation velocity,

A
w(2.5) = =k [ #(E) 6% 0’y () af (1.3)
enx oY

and Ve to the radial perturbation velocity,

A
[ =8 (o) - 07 0)) af (1.)
-2 '

ve(X,E) =

S%J..

where )\ = ¢/2R and Q%(m) is the Legendre function of second
kind and plus one-half order.

On the other hand, the velocity components for an isolated
vortex ring of unit strength may be found most easily from the

stream function Y . 1In terms of Q&(m) , we have®> ,

Y= ER;? Gok(m) (1.5)




with @ as defined in Eq. (1.2). The corresponding axial and
radial velocities are gotten from (1/r) o¥/0r and (-1/r) OY/Ox
respectively. After reduction of the former velocity by recur-

22

sion relations and chordwise integration of both over vy , we

get for the axial component uy '

A
u, (%.1) = ;;%§7§ J[ v(£) (Foy (o) - @) (@)] a (1.6)
hoY

and the radial component vy '

A
v, (X,E) = == | v(E) 0% o (o) of (1.7)
anr A

Tq evaluate Ue & Ve, “y and “y on the reference cylin-
der, or r =1 , we follow the usual procedures of thin-airfoil

theory. This has been previously carried out in detail in terms

10

of the associated elliptic functions and has been repeated

using the small argument expansion22 of Q% and Q_% ., Yielding
A
w(®1) = - & [ «f) af o/, @) of (1.8)
-\
A
ve(®1) =+ 2 £(®) + & fx () (0[@) - 0, @) af  (1.9)
A

w(®1) =Thv® + & [ v(0) (@)@ - a,@) & (1.10)
-A



1.3

A
v (®1) = - & [ v(E) of o/@) of (1.11)
-2
where
- R .
T=1+ é%_ (1.12)

Determination of Source and Vortex Strengths

Formally, £ and <y are coupled by Eq. (1.1). However,
from Egs. (1.9) and (1.11), only ve and not vy is discontin-
uous across the reference cylinder. Thus we must have

£(x) = vt (%) (1.13)

and the required source strength depends only upon the rate of

change of the duct thickness distribution as for the problem of

the two-dimensional airfoillo.

Consequently, with f determined we may regard the contin-

uous part of v as a thickness-induced camber e defined by

t

£
A

= [ @ (@ -, 6N d (1.14)
-2

and combined with € to form an effective camber €, ,

€ € -¢ (1.15)



10

Then Eq. (1.1) can be rewritten as

A
€ = - % f c(E) ax Q;i(a) af (1.16)

where
Y = uc(x) (1.17)

Eq. (1.16) constitutes an integral equation for the unknown
vortex distribution C . To solve, we shall use the iterative
procedure of Ordway and Greenberg. A new axial coordinate ¢

is introduced such that
X=-X cos ¢ (1.18)

where 0 ¢ <m™ and C is expressed in a Glauert series,

+ Z c, sin v¢ (1.19)
v=1

nje-

C = S cot

Such a series satisfies the Kutta-Joukowski condition at the
trailing edge and possesses the proper square-root singularity
at the leading edge in the cotangent term. The corresponding

Glauert coefficients are then given in matrix form2 as

(e} = (Cxd + [P] + [P)° + [P13 + ... )(c®D) (1.20)

where




11

fl

{e) = < ‘2 &

(1.21)

and (¢ P} is a column matrix of the Glauert coefficients of
a two-dimensional airfoil having a camber equal to €o ¢ these

coefficients being given by,

2-D _ 2
Co -TTf Ge d¢
0
w
2-D 4
< "Ff €, CO8 v$ d9 v>1 (1.22)
0

(1] 4is the unit matrix and [P] is a square matrix whose
coefficients are functions only of A . Each term of the operator
(C1) + [p] + [p1% + ... ) corresponds to a step in the iteration
process which in the limit converges to the exact solution, cf.
Ref. 13. The leading forty-nine elements of [P] are given in
Ref. 2 for X = 1/4, 1/2, 3/4 and 1 which covers the range of
practical interest. For convenience, we have computed the

elements of ([I] + [P] + ()2 + ... ) for these ) to an




12

accuracy of + 1 x 10'” . These are presented in Tables 1l.l-

1.4, since the elements diminish rapidly off the diagonal and
approach unity quickly on the diagonal, engineering accuracy
can be achieved in a few steps. Of course as the chord-to-
diameter ratio increases, the three-dimensional effect increases
and the speed of convergence decreases.

In summary, the source strength is found immediately from
the known thickness distribution, see Eg. (1.13), and so €_ .

t

From et and € , the Glauert coefficients of the vortex dis-

tribution are then found from a single matrix operation on the

corresponding coefficients of Egs. (1.22) for a two-dimensional

airfoil with camber ee .
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CHAPTER TWO

REDUCTION OF EFFECTIVE CAMBER

2.1 General Considerations

From Eqs. (1.22) we see that the determination of the
two-dimensional Glauert coefficients is equivalent to decom-

posing ee into the Fourier cosine series

€e = %eeo - %— Z eev cos v¢ (2.1)
V=]
i. e.,
(BP) = (e) = (e} - (e,) (2.2)

We will assume that {e€} or the contribution of the geo-
metrical camber to [ee] is known by evaluation of Eqs. (1.22)
with €_ replaced by € , cf. Ref. 24, or by direct expression
of € in the form of Eq. (2.1), cf. Ref. 25. The contribution
(e,] of the thickness-induced camber will now be determined.
To carry this out, t° and the second factor in the integrand
of Eq. (1.14), say I, , are expressed in forms suitable for
integration. We find each of these is composed of a singular
as well as a regular part and the corresponding products are

integrated in turn.

17
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2.2 Form of Thickness Distribution and t’

We will assume that t is expanded about the leading
edge in a generalized form of the NACA four- and five-digit

airfoil ser1e526
(-]
t _ x_,1 X 1\?
c=® Tt * z An(c+§) (2.3)
n=1l

where'AAO + Ay , Ay, ... are known constants and finite in
number for the NACA four- and five-digit sections and may be
found by appropriate curve fitting for others. The leading

coefficient A is related to the airfoil leading-edge radius

0
A by
A, = van/c (2.4)

This form of the thickness distribution has a square-root
behavior at the leading edge only, cf. Refs. 1l and 15 in which
the assumed distribution possesses inherently not only a square-
root behavior in t at the ieading edge but also at the trail-
ing edge as well.

Differentiating Eq. (2.3) and rewriting in a power series

in X for convenience, we find

. n-1
£ = =2 4 }; ax (2.5)
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where the respentive coefficients are related by

v
o]
]
nn)ﬂ
&v

YRV DY DU SV I A
R PO PUD P U SO DR
a = A e dn B e Bag e A )
L, +5a +Ba+Ba+ ...

>

o
=
|
f\)

. (2.6)

For NACA four- and five-digit airfoils, these coefficients are
! tabulated in Table 2.1. From Eq. (2.5) then, we see that t’
| is composed of a square-root singularity at the leading edge and a

regular part.
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2.3 Form of I1

Similarly, the second factor in €. . OF
= 1 (.o~ .o~ '
Il = 5r [Q%(d)) - Q'!E(m)] (2.7)

may be separated into two parts, a logarithmic singularity and

22

a regular term Gll . From the known behaviour of Q;5 and

Q_% near unit argument, we find

-2
I,(8%) = - g= In =+ R, (8F) (2.8)

and both the singular and regular parts are symmetric about Ax = 0 .
The regular part has been evaluated and is shown in Fig. 2.1l.

since ®,(8%X) = ®,(A cos ¢ - X cos ¢) is bounded, it is

1 (
convenient to expand it in a double Fourier cosine series in the

region 0 ¢ < T and 0K PL™ (€ = -\ cos ¢) as

>3
i

Gll = hp'q(x) cos pp cos qp (2.9)
p=0 gq=0
The coefficients hp q()\) are, from orthogonality,
T W
-5/
hp'q = ;ﬁ' Gll cos pp cos qgo do d¢ (2.10)
0 O©
for p,q# 0 ; hp.O and ho,q are one-half and h0,0 is
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one-quarter of these values. Since le is an even function
in AX , if we interchange ¢ and ¢ in Eq. (2.10) we can

show
h =h (2.11)

In addition, replacing ¢ by (w-$) and ¢ by (m-@) in
Eq. (2.10), we find

hp q =0 if (p+g) = odd integer (2.12)

For A\ =1/4 , 1/2 , 3/4 and 1 we have computed hp,q for
p.9a=0,1, 2 ...7 from Eq. (2.10) using a relaxation proce-
dure developed by G. E. Bartholemew27. This was carried out
until the difference between successive computations was less
than + 1 x 10-5 and the results are presented in Tables 2.2-
2.5.

A comparison of the exact value of le as obtained from
28

Egs. (2.7), (2.8) and tables of the Legendre functions™  with

the series value as given by Eq. (2.9) using the computed hp'q's
is given in Table 2.6. We find agreement to within #+ 1 x 10~

in all cases, the results becoming significantly better as A
decreases. This is due to the rapid decay of the hp,q with
increasing p and gq at low values of A . As expected, the

use of more terms in the double Fourier series gives a higher
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degree of accuracy.

An independent check on the accuracy of the relaxation

technique was desired. Accordingly, by the change of vari-
ables y=x+£ ,n=x-£, we found it possible to perform
analytically the integration on y and so reduce h to

P.4q
the evaluation of a single integral. Unfortunately, except

for hO o ¢ the complexity of the integrand precludes the
possibility of further numerical computation; ho 0 becomes
2A
_ 8 (Rl("l) [ & _2
h0,0 —172- y —z-x-_—n—Q_;s 1 + 16An(2a-1)"°) an (2.13)

This was evaluated for X = 1/2 and 1 and the results agree
to within one unit in the fifth decimal place with those
determined by the relaxation method.

With the expansion of both t° and I. into a singular

1
and a regqular part, we may proceed to the determination of
[Gt] . The integral form of e, , Eq. (1.14), can be sepa-
rated into four components corresponding to the multiplication
of the singular-singular, singular-regular, reqular-singular,

and regular-regular parts of t’ and I, respectively. We

will now consider the evaluation of each of these in turn and

the subsequent decomposition of [et] into the matrix form
[@l(a) .

3
%
X
3
3
]
]
&
§
-
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2.4 singular-singular Contribution

The first contribution to €, arises from the product of

the two singular terms. Upon integration by parts and trans-

formation to the Glauert angular variable ¢ , we find

b a 1, A%2)
:{: = (-gmt)d -

}Tg [2 + ;,znfé- - 4n(l+cosp) - sindg ln%s%—gﬁ-] a, (2.14)

The quantity inside the brackets is finite for 0 < ¢ < = 'as
can be verified by passing to the appropriate limits.

To obtain the contribution to [et} . Eq. (2.14) is sub-
stituted into Egs. (1.22) and the necessary integrations

carried out using elementary integrals and

w
Jf In(l+cosd) dp = -m In 2 (2.15)
0

T 1 n+l1r
Jr cos n¢ In(l+cosp) d¢p = L:—l;——— , D21 (2.16)
o)

u
f sin ¢ zn%:-i%% a¢ = o (2.17)
0

and
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U

J‘ c052n¢ sin ¢ ln%é%%%% dap =
0
an_i-3-5--: (en-l) n>1 (2.18)

2n+l 2 - 4 . 6 - . .« (2n) !

Eq. (2.15) is taken from Ref. 20. Derivations of Eqs. (2.16),
(2.17) and (2.18) may be found in the Appendix.

With these results, the contribution to [et] may be
written in the matrix form {QSS][a] where [st] is given

in Table 2.7.

Singular-Regular Contribution

In view of the form of the expansion of G%l in Eq. (2.9),
the contribution to et of the product of the singular part of
t’ and the regular part of I1 reduces immediately to a Fourier

cosine series, or

A

a
I =

Q0
}: hp,q cos pp cos gqp d€ =
0 g=

i

O

h o (LT (uePa1)| ag (2.19)

Z cos p¢ [2427\ 3 0.4

p=0

9D~

To carry this out, we have changed to the Glauert variable and
used the relationship sin % =~%(l-cos ¢) . Thus the contri-

bution to (et] may be written simply by comparison with Eq. (2.1).
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TABLE 2.7

ELEMENTS OF [Q /]




Similarly to the preceding contribution, this may be ex-

pressed as [QSR]{a] with [QSR] given in Table 2.8.

2.6 Regular-Singular Contribution

The product of the regular part of t° and the singular

part of Il combine to give

A = a1 . 2
J L et (-dmes)a-
-A =]
. i Xg_:
S af + 2" tn—Eem - ()" It
ey OO :4‘ 2z % n(l-i) () (A+x) *n

The integrals on the right-hand side have been evaluated

analyticallyzg, e. g.,

-

A

f Lol =zmME _n
oy Ax A -x

A o 5 _

f %dﬁ:i lnx—ﬂ_{-—a;{
by Ax A-x

The reduction of Eq. (2.20) to the matrix form [QRS][a]
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(2.20)

(2.21)

is

quite lengthy. To illustrate we will consider only a typical case,
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say n =1 . From the first of Eqs. (2.21) and Eq. (2.20),
this term becomes, after changing to the Glauert variable and

rearranging,
é%- 2 + tnf%-- (1-cosp) £n(l-cosp) - (l+cos¢) zn(1+cos¢)] a,
If we replace £n(l-cos¢) with £In 2sin2%¢ and In(l+cos¢)

with 4n 2cos2k¢ and expand the resulting forms by means of
formulas 603.2 and 603.4 of Ref. 20 we get

A 1 1 1

o [lnle -3 cos 2¢ - K] cos Ugp - I63'0°5 60 - ... a;
Again, the contribution of this term to [et] is found by com-
parison with Eq. (2.1). In a like manner, the contributions of

the other terms are obtained and so [QRS] , see Table 2.9.

Regular-Regular Contribution

The final contribution to (et} from the regular parts of

t’ and I is determined in the same fashion as the singular-

1

regular term. Here, this requires the evaluation of integrals
-n-1 .
whose integrand is of the form € cos dq9p . This is carried

out by changing to the Glauert variable and replacing cosn"1 )
by its alternate cosine series, cf. formulas 404, Ref. 20. The

resulting integrals follow in turn from
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TABLE 2.9

ELEMENTS OF [Qns]

-y 1oVl
-t
(@] o (o] (@) o (@] (] * .
L
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u
q+m 2 2

Jr cos mp cos e sin ¢ do = 2 -1 +m '12] (2.22)

0

[q®-(m-1)2][ q®(m+1)

which is derived by expressing the integrand as a sum of sine
functions, and is valid for m , 9 # 0 .

In Table 2.10 the corresponding matrix [QRR] is given.

Final Form of Effective Camber

wWith Tables 2.7-2.10 combined to give

(@] = [agg) + [agp! + [Qpg) + [Qpgl (2.23)
we obtain
(e} = [al(a) (2.24)

The leading forty-nine elements of [Q] have been computed to

4 for A =1/4 , 1/2 , 3/4 and 1

an accuracy of + 1 x 10~
and these are presented in Tables 2.11-2.14. Tables 2.2-2.5
were used to compute the elements of [QSR] and [QRR] .

In summary then, we have from Eq. (2.2)
(c®D) = {e) - [Ql(a) (2.25)

where the elements of {a] are related to the coefficients of

e e
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the thickness distribution by Bgs. (2.6). Consequently, the
contribution of shroud thickness has been simplified to a
single matrix operation on these related coefficients.




CHAPTER THREE

DUCT PRESSURE DISTRIBUTION,
SECTIONAL RADIAL FORCE AND PITCHING MOMENT

3.1 Linearized value of cp

The duct surface pressure coefficient cp is defined by
c, = E:BQ- (3.1)
P v
where p is the local static pressure, p, the free stream
static pressure and p the fluid density. Consistent with our

assumption of small perturbations, we use the linearized form o:

Bernoulli's equation, ox
P~ Po = - PU {ug(X,1) + u (%,1)] (3.2)

With this result and Eqs. (1.8), (1.10), (1.13) and (1.17),

Bq. (3.1) reduces to

A
cp = % c(X) +,-1F ft'(E) 8% Q7 (@) at
x - -
-} [ @) )@ - @) o (3.3)

and the net duct loading, or the inner surface pressure coefficient

by
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minus the outer surface pressure coefficient, is simply
cP] = - 2 C(x) (3.4)

We see that -cp is composed of a discontinuous part pro-
portional to the local vortex strength and a continuous part
composed of a term due directly to the duct thickness and a term
due to the vortex distribution, or equivalently, the effective
camber. Analogously to the thickness-induced camber, the con-
tributions to the continuous part may be reduced to a matrix
cperation on the duct sectional properties. This is readily seen
for the second integral if we compare the integrands of vf(i,l)
and uy(i,l) , Egs. (1.9) and (1.10), and note the form of c(Xx) ,
Eq. (1.19). For the first integral, however, it is necessary to

put the second factor in the integrand, say I in a suitable

2 ’
form.

Form of 12

We now consider 12 ., OX
I, = 5 &% Q4 (&) (3.5)

Physically, I is equal to the axial velocity induced on the

2
reference cylinder by a ring source of unit strength having the
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same radius. From the known logarithmic behaviour of Q.
near unit argument, we £ind that 12 may be separated into two
parts; a Cauchy singular term and a regular term (R,a . O

I,(8%) = - —i— + R, (AR) (3.6)

Both the regular and singular parts are antisymmetric about

AX = 0 . The regular part has been computed and is shown in

Fig. 3.1. It has been checked against the corresponding function
- - 5

Usq en (Re)

U ( previously tabulated by waissingerl .
As in the case of ®, , we expand (R.2 in a double Fourier

xq

cosine series in the region 0 ¢< " and 0o T as

R, = Z i Jp,q(*) cos pt cos qo (3.7)
p=0 g=0

Where the coefficients j . are given by Eq. (2.10) with (R,l
replaced by (R.2 and hp' T by jp' Q- Since &2 is an odd
function in Ax , we can show by interchanging ¢ and ¢ that

Ip.a™ =~ Iq,p (3.8)

As a result, jo 0’ jl 1 ¢ J2 PR all identically vanish.
Also, by replacing ¢ by (w-¢) and ¢ by (w-¢) , we £ind

Jpq™ O if (p+q) = even integer (3.9)




0.004 ;

-0.004

-0.008 —

-0.012 |——

-0.016

AX

FIGURE 3.1

VARIATION OF REGULAR PART OF 12

u7




3.3

Using the relaxation procedure mentioned earlier, we have
computed Jp'q for p,g=0,1, 2, ...7 for X =1/4 ,

1/2 , 3/4 and 1 until the difference between successive compu-
tations was less than + 1 x 107> and the results are presented
in Tables 3.1-3.4. Table 3.5 gives a comparison between the
exact value of Gta and the series value obtained using the com-

i

puted jp q- Agreement is to within + 5 x 10 ' , with the

series value for the smaller A's again being significantly
better.

With the expansion of I into a singular and a regular

2

part, the direct-thickness contribution to ¢ can be simplified

P
to matrix form.

Reduction of Direct-Thickness Contribution

Since each of the two factors in the integrand of the direct-
thickness contribution is composed of a singular and a regular
part, the contribution of this term to cp could be reduced to
matrix form in exactly the same fashion as was the thickness-
induced camber. That is, we would consider the product of the
singular-singular, singular-regular, regular-singular and regular-
regular parts and evaluate each in turn. However, it is more
convenient to break up the integration in the following manner.

First consider the product of t° and the Cauchy singular

part of 12 , O
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A
r@ s -1 [ el (3.10)
by Ax

This is identified as the thin-airfoil theory formula for the
linearized pressure coefficient of a two-dimensional airfoil
section with thickness t and no camber, see for example Ref., 30.
Foxr NACA sections, values of the local surface velocities have
been tabulated in Appendix I of Ref. 36 and it is better to use
these more exact values multiplied by (-2) rather than to
evaluate the integral of Bq. (3.10).

since ®, has been expanded in the same form as (R'l , the
remainder of the integral, or the product of t° and (R2 , follows
as in Sections 2.5 and 2.7 using jp'q instead of hp'q . OX

A

2 [ e(8) R a%) af = - (9)7[7](a) (3.11)
-2

where the minus sign is for convenience later and
(1 )
- cos ¢

[¢]!%<-c002¢>

: (3.12)

T denotes the transposed matrix, and [T] is a square matrix whose
elements are functions only of A and are given in Table 3.6.
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The leading forty-hine elements of [T] are given in Tables
3.7-3.10 to an accuracy of + 1 x 10 for A =1, 12, 3
and 1 .

Reduction of Effective-Camber Contribution

As noted in Section 3.1, the integrand of the effective-
cambexr contribution is already in a form suitable for integration.
The reduction is carried out by decomposihg the integrand into four
parts corresponding to the singular-singular, singular-regular,
regular-singular and regular-regular contributions of C and Il .

Bach of these is evaluated in turn as in Sectioms 2.4-2.7 with the

aid of the relationships sin no - sin ¢ = ¥{cos(n-1)¢ - cos(n+l)o)}

and cot &9 = (1+cos 9)/8in ¢ and the following definite integrals
which are derived in the Appendix,

ul

f in(cosp - c':c-o)2 dp = - w in 4 (3.13)
o)

us
f cos n9 fn(cosp - coo¢)2 dp = - -ilco- n¢ , n>1 (3.14)
0

m
f l:l.nvcpcosqwlinodv-’é,v-l & g=0
(0]

-+i’-,v-q¥1 & q21 (3.125)
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Finally, the four contributions are added together to give the
matrix form of the effective-camber contribution, or

"

i f c(®) ey @) - 0, @)} of = (¢)%(8](c) (3.16)
0

where [S] 41is given in Table 3.11. The leading forty-nine

¢

elements of [S] have been computed to an accuracy of + 1 x 10

and are given in Tables 3.12-3.15 for A =1/4 , 1/2 , 3/4 and 1 .

-4

Final Form of cp

The final form of the duct surface pressure coefficient is
now obtained by substituting Egs. (3.5), (3.6). (3.10), (3.11),
and (3.16) into Eq. (3.3) to get

cp, = £ C(X) + (%) - ()T((7)(a) + [8)(c)) (3.17)

Thus we have succeeded in reducing the calculation of the
aerodynamic loading on an annular airfoil to a simple matrix
operation on {a}] and (c} or equivalently, on the duct sec-
tional properties AO R Al ' 52 .. and eo ' €5 € ... since
they are related to (a] and (e¢) through EBgs. (2.6), (1.20)
and (2.25). The matrix method of computing p is ideally suited
for engineering calculations and preliminary design studies since
it is both simple and rapid and the effects of varying any or all
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of the parameters t , € , and A may be easily determined. An
estimate of the error in any calculation may be made from a
“reasonable guess" at the magnitude of the elements which have

been neglected in the tabulated matrices. Generally, the errox

will increase as ) increases.

Sectional Radial Force and Pitching Moment

For an annular airfoil at zero incidence in a perfect fluid
the net forces and moments acting on the airfoil vanish. How-
ever, if we consider a section of the duct, then we £ind that
both a radial force, or 1lift, and a pitching moment are present.
The form of the corresponding force and moment coefficients, c,
and ®m respectively, are the same as for a two-dimensional

airfoil, orx

e, = - 7(c, + ¥e,) (3.18)

cp = g-(c1 - c2) (3.19)

where the radial force is positive outwards and the pitching
moment is taken about the quarter chord, positive nose-down.
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CHAPTER FOUR
NUMERICAL EXAMPLES

4.1 Illustrative Calculation

In order to illustrate the procedure for computing the
duct pressure distribution we will work out an example in detail.

We take an NACA 0008 airfoil with

€ = - tan 5°

A =1/ (4.1)

First, we determine {€) . It follows immediately by writing e
in the form of Eq. (2.1) and is

d A
-0.1750
0]
(e} =< O F
; . J (4.2)

Next, for the NACA 0008 airfoil 5(t,,./c) = 0.4 , and from
Table 2.1 we find for A = 1/2 ,

68
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0.1188
-0.2521
-0.1238
(a) = ¢ 0.1951
-0.3248

L : J (4.3)

To obtain [et] we multiply (a} by the appropriate matrix

[Q] f£rom Table 2.12 to get

r N
0.0005

-0.0356
-0.0116
(e.) = { 0.0009
-0.0005
0.0002
~0.0002 (4.4)

for the first seven elements.

The two-dimensional Glauert coefficients, or (e) - {‘t] , are

-
((-0.1755
0.0356
 0.0116
(c®P} = { -0.0009 L
0.0005 |
-0.0002
0.0002 | (4.5)
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and s0 the Glauert coefficients of C are obtained from

Eq. (1.20) and Table 1.2 as

' =~
~0.1890

0.0088
0.0070
{(c) = { -0.0009 »
0.0005
-0.0002

0.0002 (4.6)
~ W,

Note that the three-dimensional effect of the duct changes only
the first three two-dimensional Glauert coefficients.

With the required Glauert coefficients determined, the
expression for the surface pressure coefficient, Eq. (3.17), may
be simplified. The first term, + C , is found from Egs. (1.19)
and (4.6). The contribution of F is obtained from the basic
thickness form data in Appendix 1 of Ref. 26. The matrix opera-
tions [T](a) and [s]{c] are carried out using Tables 3.8 and
3.13 and Eqs. (4.3) and (4.6), yielding

(;0.2195\
0.0945
0.0036
[r1(a) + [8){c) = { o©.0007
0.0000
0.0000
_ ©+0000 (4.7)
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With this information and {¢) from BEq. (3.12), c, has been
calculated and is plotted in Fig. 4.1. For comparison purposes,
the effect of doubling A while keeping t and € the same
has also been computed and is shown in the same figure.

The effect on p of varying t is given in Fig. 4.2 for
€ = - tan 5° and A = 1/2 . cComparison of the results with the
previous figure reveals that, for the particular configuration
investigated, doubling the chord-to-diameter ratio has a much
smaller effect on cp‘ than a nearly corresponding increase in

the thickness ratio.

Comparison With Previous Results

To assess the accuracy of this new method, we have calcu-
lated the velocity and pressure distributions on several annular
airfoils to compare with the experimental and theoretical results
of previous investigators. The only wind tunnel measurements of
pressure, or velocity, distributions published to date which we
have found are those of the Bureau Technique Zborowskill. In
their tests, the circumferential variation of the inner and outer
surface pressures on an NACA 66-006, A = 1 ring airfoil was
measured at several angles of attack. Their data which is appro-
priate to the present study, i. e., the zero angle of attack
results, has been replotted to within + 0.005 4in Pig. 4.3 and

compared with the distribution as calculated from Eq. (3.17).
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Bxcept in the immediate vicinity of the leading and trailing
edges, the results differ by less than 104. Better agreement
is obtained for the inner surface distribution.

The pressure distribution on a conical ring airfoil of zero
thickness as computed from the rheoelectric tank analogy results

of Malavard:?®

is compared with that of the present theory in

Fig. 4.4. since XA = 2/3 for this configuration, we have used
values of the necessary matrices which were estimated by linear
interpolation of the results for A =1/2 and XA = 3/4 . satis-
factory accuracy can be achieved in this manner. 1In this example,
good agreement is obtained for the outer surface distribution only.
The discrepancy between the inner surface results has not been
resolved.

10 have developed a method for finding

Bagley, Kirby and Marcer
the velocity distribution over annular airfoils in incompressible
flow. The basis of their work is the approximation of certain

31 and

integrals by Weber "sum-functions" of the airfoil ordinates
the satisfaction of the resulting set of n linear equations at

n points on the airfoil chordline. Comparison with their results
for the thi-kness-induced radial velocity (less the term 1.%-f)

on an RAE 101-10% , A = 1/2 ring airfoil is shown in Fig. 4.5.
Excellent agreement is obtained, the results being indistinguishable
except near the trailing edge. Fig. 4.6 compares the induced axial
velocities on an RAE 101-10%, X = 1 ring airfoil; again, rela-

tively good agreement is obtained.




76

-0.16
=0
€=-tanl’
-0.08 Y A=2/3
°p
Quter Surface
0
0.08
o.16 -/
Present Theory : e
Malavard : = e
0.24 L '
-A 0 +A

x|

FIGURE 4.4
PRESSURE DISTRIBUTION ON 1° CONICAL RING AIRFOIL

BT P ——




7

0.03
t= RAE 101-10% |
€=0
A= 1/2
0.02 —
v ¥ §
U
0.0l
g o
H
:
-0.0I
Present Theory : ==
Bagley, Kirby & Marcer : ===
-0.02 + :
-\ o] +A

x

FIGURE 4.5

THICKNESS~-INDUCED RADIAL VELOCITY
ON RAE 101-10% AWNULAR AIRFOIL




78

0.4
t = RAE 101-10%
€=0
A=
0.3 —
0.2 —
Surface
o.l
Outer Surface
o) 1 —
Present Theory : e \
Bagley, Kirby & Marcer : ~--
-0.1 ' !
-A 0 +\
X
FIGURE 4.6

INDUCED AXIAL VELOCITY ON RAE 101-10% AMNULAR AIRFOIL

et S s



79

We have found that the computation of the pressure distri-
bution at thirteen chordwise stations takes approximately one
hour on a desk calculator once {ej and {a) are determined.
The advance tabulagion of (¢} corresponding to these stations
proves to be of great assistance in facilitating the numerical
work. |




CONCLUSIONS

A simple, rapid method for the determination of the
linearized surface pressure distribution on streamlined ducted
bodies in axial flow has been developed. The pressure coeffi-
cient is composed of camber and thickness terms analogous to
two-dimensional flow plus an additional term expressed as a
matrix operation on the duct sectional properties. Tables of
the necessary matrices for four representative duct chord-to-
diameter ratios are given; matrices obtained by interpolation
from these values can be used for “in-between" chord-to-diameter
ratios.

The method is ideally suited for engineering calculations
and preliminary design studies and the effects of varying any
or all of the thickness and camber distributions and chord-to-
diameter ratio may easily be determined.

Comparison of predicted pressure and velocity distributions
for several annular airfoils gives good agreement with previous
experimental and theoretical results. A typical numerical com-
putation for a given configuration may be done on a desk calcu-
lator in about one hour.

The theory may be extended to include the interference
effects of a centerbody and/or a propeller as well as duct angle
of attack.
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Derivations of certain integrals referred to in the main
portion of the text are given here:
n

f_ cos n$ In(l+cosp) dp , n > 1
0

We integrate by parts with u = fn(l+cos¢) and
dv = cos nd & . Upon carrying this out, we find that the con-

tribution of uv vanishes and we are left with

m
[ e o
o]
This is evaluated in turn for each n by expanding sin n¢ in
powers of 8in ¢ , removing the factor sin ¢ , and dividing
(1+cos$) into sin°¢ = (l+cosd)(l-cosd) . The integral is then
readily reduced and the results generalized to give

u

n+l
f cos n¢ In(l+cosp) A = -(-'-97‘——1 » 21 (a.1)
o)
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T
l+sin
f sind In mﬁ- da¢
0 :
We integrate by parts with u = [n it:ig and
dv = 8ind d¢ . The contribution uv vanishes axid, after
trigonometric reduction, v du is simply 2 , so that
u
f sin¢ £n i-::in do = 2w (n.2)
o]
u
2n 1+8in
f cos“"¢ sin¢ lnr_—'rig-ddb ., n>1
o]
We integrate by parts with u = 4n lt:L and

av = cos2"p sind d¢ . Then uv vanishes and we are left with

n
iy [ oo @
0

Changing to a period of m/2 , we can integrate this in turn by
means of Formula 858.44 of Ref. 20 to obtain

"
f cos®™p sing fn (S0
0

(a.3)
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"
f in(cosp - cow)2 do
(o]

We integrate by parts with u = fn(cosp - c':ou)2 and

dv = d9 to get

"
7 fn(l+cosd)> + 2 f cos&psincosa d
0

This integral is somewhat similar in form to the Glauert
integral and can be evaluated by complex contour :Lntegrétion.
Making the substitution 2z = ew . we study a related integral

of the form

fi z-z )(mﬁ_dz

c (ze )(ze

where C is the closed curve composed of cl ' 02 ' c3 , the
indentations at +¢ , L, ., C; , and L, : viz.,

Y
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The integrand is analytic inside the region bounded by C and

2

thus, using the residue theorem3 of complex variables, we have

[ ol ol sl o[ oo +] 0
S e-1¢ Cy eld Cy L, c) L,

ia

On 'the identation at + ¢ , z = e:l'¢ + €e where a turns

through an angle of - 7 . The contribution here is evaluated

taking the limit as € - 0 . At the lower indentation, - ¢ ,

z = e'1¢ + eia , and after passing to the limit € - 0 , we find

that the contribution here exactly cancels that at + ¢ . On

in in

L, , z=re while on L, » 2= re” . The contributions of

L1 ., and L2 are combined and simplified to yield
> 1l
Jr + J[ - on Jf 2!:-: ) dr
' . ¥+ 2r cos¢ + 1
Ll L2 [.]

=7 in h(1+c0l¢)2 +2mr 4n 8

on %,z-bée,-wsegn,am,uurumnﬂuum,m
£find that

J‘ = .27 4n 8
Cy
Collecting these results, we have

j‘ = . % 4n 4(1+co.¢)2
C1+02+C3




wvhere Cl + c2 + c3 is now the unit circle, so that

PR

m : - .
[ haiede. o _ x tn 4(14c00s)? (A.4)
-7

and thus, since ¢ sin9/cosp - cos¢ is even in ¢ ,

" :
f An(cosp - cos¢)2 dp = -7 fn 4 (a.5)
o]

”
f cos n9 ln(cqw - coa¢)2 dp , n>1l
0

We integrate by parts with u = ln(cogtp - coa¢)2 and

dv = cos np d9 ; uv vanishes and we are left with

, Ll

: 2 sin®y sin n

' n f cos® - cos% de
0

Replacing 8iny sin n¢ by its equivalent sum of two cosines, we

use the Glauert :I.nt;eg::atlal4 or '

w

—€o8_po ' . sin
f cosy - cos d""-’—.‘ﬁ? , P20

0

and reduce the results to

u

f cos no sn(cosy - cow)2 dop = - -2n-1e0l M , n 2.1 (a.6)
0
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89
n
f sin vp cos qp siny d¢
0

We decompose the integrand into the sum of four cosines by
rormula 402.05 of Ref. 20, or

4 sin vo cos qp sine = [cos(q+l-v)e + cos(q+l+v)e
- cos(g-1+v)p - cos(g-1-v)gp]

The subsequent integrations are easily carried out, giving

w

f ciuvcpcooqounodo-;-,val&q-o
0

=tFoveadlEeqll (A.7)




